
Model Railway Animation: Part 5, Parts & I2C, Expanded
By David King

Thanks for joining while we build a clock for your layout that can display either the real
time or a fast time. Both of these can be practical around our layout since there may be
time that displaying the real time may be the best choice. I myself would display the real
time when I open my layout for visitors to come and view the trains. I might even let
some of the people (kids) run a few trains as well. Displaying the real time will help your
guests and yourself not lose track of time.

As for displaying the fast time this can be most useful if you wish to have operators run
your trains on a schedule or just to simulate a more realistic pace of operations on your
layout. I also find a fast clock helpful for determining how long jobs will take. For me it
is nice to know how long it takes to move a set of loaded log cars from the tree loading
camp in the mountains to the unloading area at the saw mill while following all of the
rules operation on my layout. With this information I can create a better and more
realistic operation schedule for my operators.

Making a Plan for the Project

In the past I’ve found it helpful to come up a list of requirements, wish list you might say,
for the objectives. In this case I’ll get us started.

• Display	the	Real-Time	
• Display	the	Fast-Time	
• Be	able	to	adjust	the	time	for	both	Real-Time	and	Fast-Time	
• Adjust	the	ratio	setting	for	the	Fast-Time	
• Be	able	to	Run	and	Pause	the	Fast-Time	

Next, we should come up with a priority or structure as to what order to be able to access
or complete each of the above items on the wish list. I like to create a simplified flow
chart to create this structure.

Mode 1
Display Real-Time

Mode 2
Set Real-Time

Set Year

Set
Month

Set Day

Set Hour

Set
Minute

As you have most likely noticed there are many steps to the process and we will need to
figure out what components are going to be used in order for our project to work. So, let
us make this list now.

Component Details/Notes Qty.
Arduino Uno R3 Any brand 1
7 Segment Display Adafruit Product ID: 878 for red

Adafruit Product ID: 881 for blue
Adafruit Product ID: 880 for green
Adafruit Product ID: 879 for yellow

1

Real Time Clock Module Adafruit Product ID: 3295 1
CR1220 3V Battery Adafruit Product ID: 380 1
10K Potentiometer Any supplier, POT1 1
3mm LEDS Any supplier, 1 each red, blue, yellow 3
1k ohm resistor ¼ watt Any supplier, R2 1
560 ohm resistor ¼ watt Any supplier, R1, R3 2
Momentary Push Buttons Any supplier, PB1, PB2, PB3, PB4 4
MB120 ½ breadboard Any supplier 1
Various jumper wires Any colours many

Next, I have included the wiring diagram for connecting everything together. I used
Fritzing to create the drawing just as I have in previous articles.

Mode 3
Display Fast-Time

Mode 4
Set Fast-Time

Mode 5
Set Fast-Time Ratio

Set Right
Digit

 Set Next
Digit

 Set Next
Digit

 Set Next
Digit

Set left 2 digits
for ratio

Run /
Pause

Wired up on the board we can see all of the components that I listed earlier. The Fritzing
program is very useful for figuring out where to place all of the items on the breadboard
and how to wire them together. Many times, I will wire up a project and then use items
from this project for another project but, when I get back to the project I can use this
image to re-connect everything properly together again.

You should also notice that there are a few components in the image that I did mention in
the parts listing but not in the simplified flow chart showing our operational goals. These
are the potentiometer, the LEDs, the resistors and the pushbuttons.

The potentiometer will be used to adjust the brightness of the clock display. The three
LEDs along with their resistors will give us feedback to let us know what mode the clock
is in and lastly the pushbuttons will be used to allow us to enter information into the
clock. These inputs will allow us to change modes, adjust values up and down, and
save/advance to the next steps.

To assist you with understanding the features of this project you can check out the
YouTube link here, https://youtu.be/o1HGE2GpEsE, or on the CARM website where you
found this expanded article.

Writing the Sketch

The sketch for this project is much larger than any that I have covered with you in any of
the previous articles. My fully operational code is almost 700 rungs in length. This may
sound daunting, but I will break it into smaller blocks of code and explain what each is

used for. The biggest challenge will be taking your time with it and working your way
through it with my help. Let’s get started.

From the Top

The code at the top of the sketch has a few lines describing the sketch along with other
information. In addition, all of the required libraries, 5 in all, are added to the sketch.
Lastly, I include identifying names for the Real Time Clock module, the 7-Segment
Display and commented out line to add a second display. More on the addition of
additional displays at the end of the article.

Next, we need to declare all of the variables needed in the sketch. For simplicity I have
group variables together as to their functional use in the overall project. The first group of
variables are used for the potentiometer and the pin assignments on the Uno
microcontroller board. Rung 18 is the storage variable for the value from the
potentiometer. Rung 19 is the analog pin used for the potentiometer. Rungs 20 to 26 are
all of the digital pins used for the LEDs and pushbuttons.

Rungs 28 to 31 are used when reading the current state of the 4 pushbuttons. Rungs 32 to
35 store the values associated with each of the pushbuttons. Rungs 36 to 38 are used for
the variables required for the Ratio function of the Fast-Time. Rung 36 is the Ratio value
displayed on the 7-Segment Display, rung 37 is the Ratio value stored in memory and
rung 38 is the memory location.

This is the longest block of variables needed. Rungs 40 to 44 are used for the current
Fast-Time values. Rungs 45 to 49 are the values that can be adjusted for the Fast-Time.
Rungs 50 to 54 are the memory locations for the Fast-Time. Rung 55 is used to store the
run/pause state of the Fast-Time. Rungs 56 to 68 are used to step through each setting of
the Fast-Time and Real-Time. Rungs 69 to 73 are used for the adjustment of the Real-
Time Clock.

This is the shortest list of variables that are required. Rungs 75 and 76 store the current
time and pulse time in milliseconds from the on-board Uno timer. Rung 77 is the amount

of time between pulses, the current set is 1000 milliseconds which equals 1 second. Rung
78 is used to let us know when the pulse happens.

This is all of the variables in use for this sketch.

The Setup Code

Just like all of the variable declarations I’m going to take the setup void() and break it
into smaller more manageable blocks of code. First is the pin assignment using the
pinMode() functions. Here the LEDs are set as outputs and the pins for the 4 pushbuttons
are set as input_pullup. Doing this with the inputs sets all of the input to have 5 volts on
the pins so all we need to do is ground each of the inputs using the pushbuttons to tell
when they have been activated. On rung 89 I start the 7-Segment Display by using its’
name, matrix, along with the begin(). The I2C address of the display is inserted between
the brackets to complete this function.

Rung 90 is commented out right now but you would need this instruction if more than
one display is being used. Rungs 91 to 97 are used to have the display go to the initial
display of being totally blank. This starts the display with no data displayed. You would
need to repeat rungs 91 to 97 if additional displays are used.

Let me take this opportunity to explain how rungs 91 to 97 work together. Rung 91 just
sets the brightness of the display. The range for brightness is from 0 to 15. We will
overwrite this setting in the void loop(). Rungs 92 to 96 are what will be displayed for
each digit of the 7-Segment Display. The digits are numbered by position, 0 through 4
starting from the left digit. The colon in the middle is actually position number 2. The
empty space, “ “, and the false all mean to display nothing.

Located on rung 99 is the function to begin the Serial Monitor which allows us to see
what is happening in the sketch when we have it connected to a computer.

Rungs 100 to 103 are used to talk to the Real-Time Clock module and if it can’t find the
module it sends a message to the Serial Monitor to inform the user the that RTC module
has not been found. Rungs 105 to 112 are used a little differently in that it checks to see if
the RTC module is running. If it thinks the clock has stopped or hasn’t been running in
the background it sends a message to the Serial Monitor. Also, if the clock has not been
set it will set the date and time using your computers date and time as the current date and
time. This is only done when the sketch is being installed on the Uno.

As a side note it is important to know that a battery must be installed in the RTC module
for it to function. It is even possible for it to work if the battery is dead and the only down
side is that RTC won’t keep running when the power to the Uno is disconnected. The
RTC only uses the battery when it is not being supplied by an external power supply as in
power from the Uno.

The next block of code in rungs 114 to 120 in the void setup() is used for the Fast-Time
Ratio value. During start up the ratio is read from the eeprom memory on the Uno and
stored in the variable ratioValue. If the value in memory is 0 as it would be the very first
time you upload the sketch onto the Uno it places a 4 in the memory location and then
uses that value until you set and save a different ratio value. Rungs 121 and 122 sends the
message and value or rVal to the Serial Monitor for the user to see what is happening.

The next block of code is used for the retrieval and storage of the Fast-Time from the
eeprom memory on the Uno. In each group of 6 rungs the values are first read in from
memory and if the value is not in an acceptable rage of values for that digit a default

value of 0 is substituted and written into the memory location. Doing this will ensure that
the Fast-Time value will make sense. As an example, let’s look at rungs 124 to 129. The
left most digit of the time is the 10’s of hours in a day so the only valid digits that can be
in that location could be either 0, 1 or 2. Rung 125 checks to see if the number read from
memory falls within the valid range. If the value read is outside of the range the code on
rung 126 is used to set the value to 0 and rung 127 stores the 0 into the eeprom memory.
Rung 129 then copies the value that was in memory and places it in the value used by the
display.

The process of reading the values from memory, checking that the value is valid, writing
a default value to memory if needed and copying the value to a variable used by the
display is repeated for the rest of the Fast-Time variables.

The only block of code remaining in the void setup() is used to assist us in seeing what is
happening inside of the sketch. Rungs 159 to 170 are used to give us a nice display of the
current Fast-Time setting as a complete time value rather than a set of individual
numbers. Of course this is sent to the Serial Monitor.

Now for the Loop

At this time we will have a look at the void loop() block of code which is repeated
continuously. From here we can control the flow of the sketch so that each of the mode
can be accessed when needed and also have the indicator LEDs display properly. The
details for each mode will be handled within their own void functions as subroutines.
Using this approach limits the size thereby increasing the ease to which we can view and
understand the main loop. The loop itself starts on rung 172.

Rungs 173 to 178 are used to create a 1 second pulse that will be used by various modes
in different ways. Rung 173 set the value of timeNow to the millisecond time located in
the internal timer of the Uno. On rung 174 we check to see if this timeNow value is
greater than a value called timePulse, which will be 0 the first time through the loop. If
the check on rung 174 is true then the code on rungs 175 to 177 is completed. First on
rung 175 we set a new value for timePulse which is the sum of timeNow and timeGoal,
this has a value of 1000 which is equal to 1000 milliseconds or 1 second. Rung 176 sets a
variable called pulseTrue to a true state and can be used by the subroutines. On rung 177
we set a variable called setColon to either true or false which was the opposite state of the
variable on the previous loop. This allows us to make the colon on the 7-Segment Display
blink with a 1 second pulse if we need to in any of the modes.

Rung 180 is used to copy the RTC real time for use in modes 1 or 2 as needed.

Rungs 181 to 183 are used to read the value of the potentiometer and set the brightness of
the 7-Segment Display. Rung 184 is used if additional display as being used.

In this next block of code, we read if the mode button is being pressed which is on rung
186 by looking at mode pushbutton input. If the button has been pressed has been pressed
the mode pushbutton input will be forced to 0 volts, grounded, returning a false value to
the sketch. Remember that we set all of the pushbutton values to true, 5 volts, by using
the INPUT_PULLUP command in the void setup(). Rung 187 is used to test this
true/false condition but looking for the false state using the !modeState variable. If the
input is false we increase the mode value by 1 on rung 188. Then on rung 189 we check
to see if the mode value is greater than 5, if it is then we set it back to a value of 1. This
limits the valid range for mode from 1 to 5 as these are the number of modes we have.

On rungs 192 and 193 we send a message to the Serial Monitor so that we can see what
the current mode is in the sketch. Finally, on Rung 194 we create a ½ second display so
that we have time to stop pressing the mode pushbutton and prevent us getting multiple
input signals from it. After all we should just advance 1 mode at a time.

The next larger block of code on rungs 197 to 230 is used to control what functions will
be completed based on the current mode value, 1 to 5. This starts on rung 197 with an
instruction that I introduced in the previous Part 4 article. This instruction is the switch().
Here we use the modeValue variable from the code on the rungs above and then we can
execute the code inside of the switch() based on the case value. The case value is the
value that is located inside of the brackets on the switch().

Each case is using similar code and this can be broken into the following and I will use
case 1 as the example. Rung 198 states which case it is looking for. For each case I have
added a comment to make it easier to identify each case. The next 3 rungs, 199 to 201 set
the LEDs to on or off depended on what we want for each case. Green is used for the
Real-Time Clock. Yellow is used when setting can be changed. Blue is used for the Fast-
Time Clock. The next piece of code, 3 rungs this time and only 1 rung for the other cases,
is used to call or jump to the subroutine needed for this mode. At the end of each case,
rung 205 for this case, is a break command. This break command allows to jump free of
the switch() without looking at the rest of the cases.

This code repeats for each of the modes which are;
Mode 1: Real-Time Clock Display
Mode 2: Set Real-Time Clock
Mode 3: Fast-Time Clock Display and Run/Pause Time
Mode 4: Set Fast-Time Starting Time
Mode 5: Set Fast-Time Ratio

Most of the remaining code in the void loop() section is used to reset many of the
variables that are used in various mode subroutines. Since it is possible to switch modes
at almost any time we need to be able to reset variables that may cause us problems when
we re-enter that mode.

This first of these resets is located on rungs 231 to 238. This code is used to reset the
variables used in mode 2 when we are setting the time of the Real-Time clock.

For the block of code on rungs 239 to 241 only 1 variable needs to be reset and that is to
pause the Fast-Time clock when you leave mode 3.

This next block of code on rungs 242 to 246 is checking for 2 conditions to be true. If
both are true, the Fast-Time is paused and we are in mode 3, then the display will be
blinking on and off. This will let our operators that the Fast-Time Clock is currently
paused and they should not be operating their trains. If either condition or both conditions
are false the display will be on steady and not flashing.

This block of code on rungs 247 to 253 are used any time we are not in mode 4 so that we
can reset all of the variables required for setting the Fast-Time Clock time so that these
functions will work properly when we re-enter mode 4.

This final line of code in the void loop() section is used to reset the pulseTrue variable
that we set back on rung 176.

This completes this section of coding and the only part remaining is each of the
subroutines.

Mode 1 Subroutine

The mode 1 subroutine is used to display the Real-Time Clock on the display. This
section of code is not that complex since none of the buttons, except the mode button, can
do anything while in this mode. The task is simpler, just display the time.

To display the Real-Time, we need to breakdown the minutes and hours to individual
digits, one for each of the 7-Segment sections on the display. We will start with start with
the hours. The left most digit only has 3 possible numbers that can be displayed, either 0,
1 or 2. On rung 258 we start with the name of the subroutine, void realTime(). Next we
get the current date and time from the RTC module and store this in the default variable
now. On rung 260 we check the value of the hours component by looking at now.hour().
If the now.hour() is less than 10 we place a 0 in the left most digit and the right digit of
the variable in the next digit, second from the left. If the value is 10 or more and we move
on to rung 265 through the use of the else instruction. Again, we move on if the value is
20 or more. This will complete the hours display as the maximum hours value would be
23. If it was 24 the number would reset to 0.

Now on rung 274 we tell the colon in the middle of the display to remain on steady and
not to flash.

Starting on rung 275 and continuing to rung 309 we display the minute using code similar
to that of the hours displayed. Rung 310 sends all the information to the display.

Mode 2 Subroutine

The mode 2 subroutine is used to set the date and time for the Real-Time. This is one of
the longest sections of code since there are many variables to set in the RTC module. The
one good part about using this setting is that each variables are set separately and you
should not be doing this very often.

We start on rung 313 by naming the subroutine, setRealTime(). In rungs 314 to 323 we
check to see that we have not yet read in the variables from the RTC module and have
stored them in some temporary variables. Once we read in the date and time on rung 315
we break down each of the date and time variables to out temporary variable on rungs
316 to 320. Next, we set a Boolean value, setYear, on rung 321 to true as it will be the
first of the date and time variables we can change. We also set the Boolean value
setRealTimeRead on rung 322 to true so that we only do this reading and setting of the
variables once while in mode 2.

In the next block of code we read the states of the pushbuttons excluding the mode
button. This takes place on rungs 324 to 326. The run and pause buttons are used as the
up and down buttons when setting any variables. The enter button is used to accept the
new value for the variable currently being adjusted and moves us to the next step. These
steps are shown in the simplified flow chart back on the first page.

Our first variable to adjust will be the year which is done on rungs 327 to 343. On rung
327 we check and make sure that we have read in the current values for each variable in
the RTC date and time by checking the state of setRealTimeRead as being true. This was
set on rung 322 of the block of code above. We also check to make sure we are currently
in the year variable by check the state of setYear as being true. This was set on rung 321
above.

The next 2 if(), on rungs 328 and 332 check to see if the up or down button is currently
pressed. If one of these buttons have been pressed the year value will increase or
decrease. There are no upper of lower limits for the value but I don’t suspect you are
going to push the button too many times.

Once the desired year value is displayed it is time to press the enter button. When this
occurs next the block of code for adjusting the month variables is set to true, setMonth on

rung 337, the year block of code is set to false, setYear on 338. Lastly we a slight pause
of 300 milliseconds to give you time to let go of the enter button.

Rungs 341 and 342 are used to display the current value for the year on the 7-Segment
Display. This is updated constantly while setting the year variable.

The block of code on rungs 344 to 365 are used to set the value of the month variable so
there really isn’t any point going through this in detail as it works the same as setting the
value of the year variable. A range of 1 to 12 has been added since there are only 12
months in a year.

In the next block of code on rungs 366 to 397 we adjust the day value. The only
difference with this code from the previous is that I’ve set maximum limits based on the
possible number of days in each month.

Now it is time to set the value of the hours variables using the code in rungs 389 to 419.
Again, limits are set up to limit the range of the hours.

There is only one last variable to adjust and that is for the minutes. The code is in rungs
420 to 441. Limits have also been included for the minutes.

Now that all of the values for the Real-Time have been adjusted the only thing left to do
in mode 2 is to save these values in the Real-Time Clock module. The code in the rungs
442 to 451 handles this need. The code on rung 443 access the RTC module and is the
instruction that accomplishes the saving function. Rung 444 includes a slight delay to
allow the save enough time before continuing. Rung 445 set the display into a full display
blinking mode. The cause all segments that are used to display the time to flash between
on and off. This lasts for 1 second as set by the code on rung 447. The blink function of
the display is turned off by setting the blinkRate to 0 on rung 448. Rung 449 sets the state
of setRealTimeWrite to false so the information is only saved once on the RTC module.

Well that’s it for the code required for mode 2, setting the Real-Time Clock. This was
long but well worth it as the time may not always be correct. Depending on where you
live you may need to take in account changes for Daylight Savings Time. Also, if the
battery dies the time may not be working when the unit is off-line. Be sure to have the
battery installed in the RTC module even if the battery is dead as it needs to know that
one has been installed in order to operate.

Mode 3 Subroutine

The mode 3 subroutine is used to run and display the Fast-Time. The options this time are
restricted to actively running the Fast-Time or pausing the Fast-Time. No other
adjustments can be made in this mode.

This subroutine starts with a comment on rung 453 to let us know where it starts. Rung
454 is used to define the name of the subroutine as void fastClock(). Rungs 455 and 456
are used to check the state of the pushbuttons for the run and pause functions. At this
point both pushbuttons should be returning a true condition since neither is being pressed
and we set the input pins to pinMode state of INPUT_PULLUP back on rungs 86 and 87
in the void setup().

Rungs 457 to 459 will set the value of ftRunning to true if the run buttons is pressed.
Rungs 460 to 462 will set the value of ftRunning to false if the pause button is pressed.
The value of ftRunning is maintained in the last state chosen if not buttons are being
pressed. Also, anytime we are not in mode 3 the value of ftRunning will be false as this
was set back on rungs 239 to 241 in the void loop().

The next block of code starting on rung 464 is used to calculate each digit of the Fast-
Time when the ftRunning value is true and when we see the 1 second pulse that was
created on rungs 173 to 178 in the void loop().

The calculation begins on rung 465 by adding the ratio value, rVal, to the seconds value
to come up with a new seconds total. If the seconds value was 17 and we add the ratio
value, let’s say the ratio is set to 8:1, the new seconds total would be 25. On the following
pulses we would again add 8 for each pulse. The resulting totals would be 33, then 41,
49, 57, 65 and so on. We need to do something at this point as the total is now over 59
and as we know 60 seconds equal 1 minute. So, at this point we increase the value of the
minutes by 1 and subtract 60 from the seconds. Doing this the new seconds value would
be 5 and no longer would it be 65.

We continue doing similar calculations for each of the 4 digits to be displayed. We first
look at the right minutes digit value remembering that valid values for this digit are 0 to
9. Next, we do the calculation for the left minutes digit which has a valid range of 0 to 5.
The hours right digit is next with a range from 0 to 9 if the left hours digit is a 0 or 1 but a
lesser range of 0 to 3 when the left hours digit is 3. Finally we do the left hours digit
which has a value of 0 to 2. As we get close to midnight the time would be 23:59 so when

enough seconds have been accumulated to add 1 more minute the display would roll over
to 00:00.

Now that we have calculated each digit of the display and the seconds we need to save
this value to the eeprom memory located on the Uno microprocessor. We complete the
saving of these values on rungs 485 to 489.

If you have your computer connected to the Uno and have uploaded the sketch to the Uno
you can use the Serial Monitor to watch the Fast-Time operate. This can be helpful if you
are trying to understand the operation of the Fast-Time or if you are having any problems
in running it.

As a reminder both the eeprom and print instructions are located inside of the if statement
so this is only done once per second when the pulse is true.

The final block of code in this subroutine is used to send the time to the 7-Segment
Display. The display is updated during each time we loop through the sketch while we
are in mode 3.

Mode 4 Subroutine

In the mode 4 subroutine we will be able to set the current Fast-Time Clock setting. This
means that we can adjust the time that will be used begin running your Fast-Time. If you
only run daytime operating sessions you could set the start time for the session at 06:00
or 07:30 as examples. The beginning time for your session is your choice.

Similar to the other subroutines I start with a comment to identify the beginning of the
subroutine on rung 511 and then name the subroutine void seFastClock() on rung 512.
From here on rungs 513 to 522 we read in the currently saved Fast-Time from the eeprom
memory. At this point we set a couple of variables to true for use in the next few blocks
of code and we display the current value of sethoursL on the Serial Monitor if it is being
used. All of this is similar to what we did in mode 2 for setting the Real-Time.

Now it is time to read in the states of each pushbutton, rungs 523 to 525, so that they can
be used while in this mode.

On rungs 527 to 548 we will set the value of the left hours digit. We need to make sure
that the value remains within a valid range which is very limited for this digit, only from
0 to 1. Next we save the value to the eeprom memory and display the sethoursR value to
the Serial Monitor. We also set the value of sethoursL to false and sethoursR to true to
move to the next block of code for adjusting the right hours digit. The steps we follow for

setting the Fast-Time is very similar to that of setting the Real-Time so the code should
be easy to follow.

Now we set the right hours digit then move onto the left minutes digit following the same
coding pattern as above.

Now we set the left minutes digit then move onto the right minutes digit following the
same coding pattern as above.

Now we set the right minutes digit then move onto the left hours digit following the same
coding pattern as above. This time it allows us to return to the left hours digit so that we
can keep adjusting all of the digits until we are satisfied by the time have entered.
Pressing the mode button we take us out of this loop and on to the subroutine for
adjusting the Fast-Time ratio.

In the next block of code on rungs 624 to 646 we control what is being displayed on the
7-Segment display as we work through setting each of the digits. One thing to note is that
on the 7-Segment Display a small dot that is located at the bottom right corner of each
digit. When the dot is lit up that lets us know which digit we are adjusting. The 3
remaining dots will be off at this time.

Mode 5 Subroutine

We are just about at the end of the sketch as this is the last subroutine and block of code
that is needed to make this project work. This subroutine is much shorter in length than
the previous subroutines and it is located on rungs 648 to 686. The purpose of this
subroutine is to set the Fast-Time ratio to a value that falls within the range from 1:1 to
12:1.

On rung 648 I have included a comment to make it easier to find the beginning of the
subroutine. The subroutine is named, void setFastRatio(), on rung 649. Rungs 650 to 663
are used to display the current ratio on the 7-Segment Display. The value in memory was
read from the eeprom back in the void setup() section.

In the next block of code, rungs 664 and 665, the state of the pushbuttons for run (up) and
pause (down) are checked. The next few rungs, 666 to 671, is used to increase the value

of the ratio as high as 12. Rungs 672 to 677 is used to decrease the value of the ratio to a
low of 0.

The final block of code on rungs 678 to 686 are used read the state of the enter button,
display the ratio on the Serial monitor and save the value to the eeprom memory.

Conclusion

This wraps up the code needed to make the 7-Segment Display usable for both Real-Time
and Fast-Time display. You can add to the programming by adding code for a second
display. To ease the amount of programming you might only include display information
needed when in modes 1 or 2, which are used to display times. There really is no need to
have a second display functioning when you are setting the Real-Time, Fast-Time or
Ratio for the Fast-Time as your operators don’t need this information.

Located on the CARM website where you found this expanded article you will also find a
video where I show the functions of this project as well as a downloadable file of the
completed project as an Arduino file using the ino extension. I will also include other
links for images of the project mounted including a second display. I will also add files
with updates to code for additional displays.

Well that’s if for now, enjoy this and future articles. For the next article in The Canadian
I will be building a working (moving spout) water tank.

If you have any other project ideas or questions please contact me. Thanks.

David King, directordavid@caorm.org

