
Model	Railway	Animation:	Part	2	Expanded,	Input	Controls	
By	David	King	
	
In	this	expanded	text	of	the	original	article	published	in	The	Canadian	we	will	
continue	by	calibrating	the	photo	resistors	to	work	like	switches	that	can	be	used	to	
activate	the	grade	crossing	flashers.	
	
Calibrating	the	Photo	Resistors	
	
Calibrating	is	important	as	the	lighting	conditions	that	your	photo	resistors	need	to	
work	in	can	vary	greatly	on	your	layout.	If	your	layout	is	in	a	fixed	location	and	you	
only	operate	in	a	day	mode	the	lighting	will	most	likely	not	change	during	your	time	
on	the	layout	so	calibrating	once	when	you	first	power	up	your	layout	should	be	
sufficient.	If	your	lighting	conditions	on	your	layout	changes	while	operating	you	
would	need	to	re-calibrate	the	photo	resistors.	
	
The	reason	we	want	to	calibrate	the	photo	resistors	is	so	that	we	know	what	the	
normal	level	of	light	on	the	sensors	will	be	so	that	we	can	tell	when	the	light	is	being	
blocked.	This	blocked	value	will	be	the	value	we	are	looking	for	to	trip	our	railway	
grade	flashing	lights.	
	
The	calibration	of	the	sensors	is	done	in	the	void	setup	portion	of	the	sketch	since	
we	usually	only	need	to	run	this	once.	To	start	with	the	calibration	will	use	a	
while().	This	while	function	will	be	true	for	a	time	of	2	seconds	and	we	can	use	the	
function	millis()	to	read	how	much	time	has	passed	in	milliseconds	since	the	last	
power	up	or	reset	of	the	Uno.	Since	we	are	doing	this	calibration	when	powering	up	
the	Uno	or	just	after	resetting	the	Uno	we	can	take	advantage	of	an	internal	clock	
located	in	the	main	microprocessor	chip	on	our	Uno.	
	
In	the	while()	we	will	read	the	current	value	from	the	photo	resistors	and	we	will	
save	the	highest	value	we	see.	Remember	that	when	light	is	on	the	sensors	the	value	
from	the	photo	resistors	will	be	low.	Once	the	while()	has	finished	we	will	add	200	
to	the	low	value	and	save	this	as	the	high	value.	The	maximum	rage	for	values	from	
the	photo	resistors	is	from	0	to	1023	so	using	200	as	the	difference	between	an	un-
blocked	and	a	block	sensor	should	be	enough	of	a	difference	to	prevent	getting	false	
high	value	triggers.	
	
The	only	other	items	in	the	void	setup	are	lines	of	coding	to	let	us	use	the	serial	
monitor	so	that	we	can	tell	what	the	sensor	is	using	as	the	low	and	high	values	from	
our	calibration.	
	
Here	is	my	code	and	I	would	suspect	that	yours	will	be	similar	but	it	doesn’t	need	to	
be	exactly	the	same.	You	can	also	use	the	last	wiring	configuration	that	we	used	for	
the	previous	sketch	in	the	main	article.	
	



	
	
Once	we	figure	out	the	calibration	of	the	photo	resistor	we	should	add	some	
additional	code	to	see	the	operation	using	a	LED.	Keeping	it	simple	is	the	key	here	so	
we	can	use	the	LED	to	let	us	know	each	time	that	one	or	both	of	the	photo	resistors	
have	enough	light	blocked.	This	would	be	similar	to	railcars	passing	over	the	photo	
resistors	as	the	cars	are	moving	along	the	tracks.	Add	the	following	code	to	test	this.	
	

	
	



Now	that	we	have	the	photo	resistors	working	we	should	use	them	to	trigger	the	
grade	crossing	flasher	lights.	This	can	be	done	with	very	little	change	to	the	existing	
sketch.	We	will	need	to	add	a	little	coding	in	the	void	loop	and	we	also	need	to	add	
the	new	variable	declarations	and	set	the	pinMode()	for	the	additional	LEDs.	Here	
are	the	additions	and	new	void	loop	code.	
	
	Add	this	code	to	the	declarations.	
	
int	ledFlasher1	=	10;							//	Sets	pin	for	the	1st	grade	crossing	LED	
int	ledFlasher2	=	11;							//	Sets	pin	for	the	2nd	grade	crossing	LED	
boolean	turnOnFlasher	=	false;		//	Use	this	to	enable	the	grade	crossing	LEDs	
int	timeDelay	=	250;								//	Sets	the	timing	of	the	flasher	LEDs	
	
Add	this	code	to	the	void	setup.	
	
	pinMode(ledFlasher1,	OUTPUT);											//	Set	pin	as	an	output	
	pinMode(ledFlasher2,	OUTPUT);											//	Set	pin	as	an	output	
	
Update	the	void	loop	code.	
	

	



Here	is	the	updated	wiring	required.	
	

	
	
Now	that	the	grade	crossing	flasher	is	being	triggered	by	the	lack	of	light	on	the	
photo	resistors	when	should	add	an	off	delay	to	the	trigger.	What	I	mean	by	that	is	
that	we	should	continue	to	operate	the	grade	flashing	lights	for	a	few	seconds	after	
light	has	been	restored	to	all	of	the	photo	resistors.	Right	now	each	time	the	photo	
resistors	have	full	light	restored	the	grade	flasher	lights	turn	off	very	quickly.	This	
causes	a	jerky	or	unsteady	operation	of	the	grade	flashing	lights	as	cars	move	from	
blocking	the	light	to	allowing	the	light	to	reach	the	photo	resistors.	To	smoothen	out	
the	operation	we	will	add	a	6	second	off	delay	for	the	trigger.	To	do	this	we	will	use	
a	timer	to	maintain	the	trigger	for	the	6	seconds	once	the	light	is	restored	to	the	
photo	resistors.	If	the	light	is	blocked	prior	to	the	6	seconds	finishing	the	timing	
operation	the	timer	is	reset	and	the	6	second	timer	starts	over	next	time	the	photo	
resistors	receive	unblocked	light.	
	
A	Timer	
	
If	we	do	a	little	searching	we	will	find	that	there	is	no	timer	function	but	with	some	
code	we	can	create	a	timer.	To	do	this	we	need	to	determine	what	steps	will	need	to	
be	taken	to	accomplish	this	function	and	learn	a	new	data	type	to	use	the	internal	
timer	(clock)	inside	of	the	Uno.	The	new	data	type	is	unsigned	long	which	starts	at	0	
and	ends	at	4,294,967,295	or	(232-1).	We	will	use	this	data	type	to	read	the	current	
time	in	the	Uno	which	is	in	milliseconds	using	the	millis().	The	code	required	would	



be	timeCurrent	=	millis();	and	this	needs	to	be	added	in	the	void	loop	section.	I’ll	
show	the	completed	code	a	little	later	on	line	55.	
	
Next	we	need	to	set	a	goal	time	for	resetting	the	off	delay	timer.	To	do	this	we	
simply	add	6000	(6	seconds)	to	the	timeCurrent	every	time	we	see	that	at	least	one	
of	the	photo	resistors	has	its	light	block.	Luck	for	us	we	already	check	for	this	event	
in	our	sketch	so	we	need	to	add	the	line	of	code,	timeGoal	=	timeCurrent	+	
offDelayTime;	to	the	true	condition	of	one	of	the	if(photoEyeValue	>	
photoEyeHigh)	shown	on	line	55.		Inside	of	the	true	condition	we	set	the	true	state	
of	the	Boolean	value	turnOnFlasher	on	line	61	and	this	will	now	be	used	for	not	only	
starting	the	grade	flasher	LEDs	but	also	for	the	time	check	for	the	off	delay	timer.	At	
this	time	we	will	also	remove	the	code	located	in	the	false	condition	of	this	same	if()	
used	for	setting	the	turnOnFlasher	state	to	false.	
	
The	last	thing	we	need	to	do	is	set	the	state	of	turnOnFlasher	to	false	when	the	
timeGoal	is	less	than	the	timeCurrent	value.	This	is	accomplished	by	using	an	if()	
starting	on	line	69.		
	
Remember	to	add	the	declarations	of	the	new	value	names	as	shown	in	the	
completed	code	below.	No	changes	are	needed	to	the	wiring	of	the	LEDs	or	photo	
resistors	for	this	to	work.	
	

	
	



	

	

	



One	more	addition	
	
This	may	look	like	a	lot	but	we	have	one	more	little	step	to	improve	this	grade	
crossing	flasher	LEDs	and	that	would	be	to	have	the	ability	to	vary	the	rate	of	flash.	
To	do	this	we	are	going	to	add	another	external	component,	the	potentiometer	or	
variable	resistor.	The	connections	required	for	this	device	are	very	simple	as	it	has	
only	3	connection	points.	The	outer	2	connections	are	connected	to	+5	volts	and	
ground,	one	connection	to	each.	The	middle	connection	is	connected	to	A1	another	
of	the	analog	connections	on	the	Uno.		
	

	
	
Electrically	all	3	of	these	devices	are	identical,	10,000	ohms	each,	but	they	vary	
physically.	To	adjust	the	resistance	on	the	middle	pin	as	compared	to	the	outside	
pins	you	only	need	to	turn	the	knob.	This	will	vary	the	voltage	on	the	middle	pin	
when	the	outside	pins	are	connected	to	+5	volts	and	ground.	Below	is	a	drawing	that	
may	help	explain	this.	
	

	
	

These	3	variable	resistors	
are	from	Adafruit,	
Arduino	and	SparkFun,	
left	to	right.	



The	A1	pin	as	an	analog	input	can	read	this	varying	of	the	voltage	from	the	
potentiometer.	The	Uno	converts	this	voltage	signal	to	a	digital	value	that	ranges	
from	0	to	1023.	This	is	considered	a	10-bit	input	(210).	We	could	use	this	value	as	
our	timeDelay	variable	but	we	may	want	to	manipulate	this	number	as	the	delay	for	
the	flashers	should	never	be	0	milliseconds	and	1.023	seconds	would	be	way	too	
long.	A	range	somewhere	in	between	these	two	extremes	would	be	better.	Yes	we	
could	just	make	sure	that	we	don’t	adjust	the	potentiometer	too	low	or	too	high	but	
to	get	the	most	our	of	the	variable	resistor	we	could	just	rescale	the	value	to	50ms	to	
750ms.	Luck	for	use	that	there	is	a	built-in	function	to	do	just	this.		
	
The	map(x,	a,	b,	c,	d)	is	simple	to	use	so	let	me	explain	how	it	works.	First	the	x	is	
where	we	will	insert	the	value	from	the	A1	pin.	Next	the	a	is	the	minimum	value	of	
the	input	,	b	is	the	maximum	value	of	the	input.	Finally	c	is	the	new	minimum	value	
and	d	is	the	new	maximum	value	that	will	be	used	for	the	timeDelay	variable.	The	
completed	function	would	look	like	this.	
	
delayTime	=	map(potInput,	0,	1023,	50,	750);	
	
The	new	variable	potInput	is	the	raw	input	value	on	pin	A1.	
	
The	completed	code	is	shown	after	the	wiring	diagram	below.	Here	is	a	list	of	the	
code	changes	made	and	their	current	rung	numbers.	
	
Rung	7,	added	additional	comment	for	the	variable	resistor.	
Rungs	23	&	24,	added	the	new	variable	that	need	to	be	declared.	
Rung	58,	read	the	analog	input	from	pin	A1.	
Rung	59,	map	the	input	from	pin	A1	to	a	range	of	50ms	to	750ms.	
	
If	you	follow	the	wiring	diagram	and	the	code	changes	you	should	now	have	a	fully	
operational	grade	crossing	flasher	with	an	adjustable	flash	rate.	Good	Luck.	
	
Here	is	wiring	diagram	for	the	addition	on	variable	resistor.	
	



	
	

	
	



	
	

	
	



	
	
	
Conclusion	
	
This	has	concluded	this	lesson	but	be	sure	to	join	us	in	the	next	issue	of	The	
Canadian	as	I	this	series	of	articles	continue	with	a	focus	of	making	things	move.	
Also	send	me	any	comments	or	ideas	for	future	projects	to	David	King,	
directordavid@caorm.org	
	
	


