
Model	Railway	Animation:	Part	3	Expanded	
By	David	King	
	
Welcome	to	the	expanded	instalment	of	Part	3	of	this	series	as	we	will	some	create	a	
couple	additional	sketches	on	how	to	control	our	small	DC	motors.	The	first	sketch	
will	allow	us	to	start	and	stop	a	motor	with	the	use	of	a	single	pushbutton	while	the	
second	sketch	will	allow	use	the	added	ability	to	reverse	the	direction	of	rotation	of	
the	motor	using	a	second	pushbutton.	We	will	continue	to	use	the	potentiometer	to	
control	the	speed	of	the	motor.	
	
Starting	and	Stopping	the	Motor	
	
To	modify	our	existing	sketch	to	allow	us	to	start	and	stop	the	small	DC	motor	using	
a	single	pushbutton.	The	only	hardware	needed	will	be	one	of	the	small	pushbuttons	
included	in	your	kit	and	a	couple	of	jumper	wires.		
	

	
	
The	image	here	is	showing	a	typical	pushbutton	switch	similar	to	the	ones	included	
in	your	kit	along	with	the	how	the	pins	are	connected.	It	is	possible	to	have	other	
wiring	or	pinout	arrangements	than	the	one	I	show	here	but	this	setup	is	the	most	
common.	
	
To	wire	up	this	pushbutton	you	will	need	to	connect	one	end	of	a	jumper	from	one	
side	of	the	pushbutton	and	the	other	end	of	the	jumper	will	be	connected	to	ground.	
The	second	jumper	will	be	connected	from	the	other	side	of	the	pushbutton	switch	
to	digital	pin	4	on	the	Uno.	The	Fritzing	image	on	the	next	page	will	show	you	this	
wiring.	Note	that	I	have	removed	the	second	motor	from	the	Fritzing	diagram	to	
make	this	image	and	wiring	easier	to	view.	If	you	are	using	the	Arduino	kit	along	
with	the	Mosfet	to	control	the	motor	just	use	the	wiring	for	that	configuration	as	
shown	in	the	article	in	The	Canadian.	
	

	
	
Let	us	look	at	the	coded	needed	to	control	this	motor	while	using	the	Start/Stop	
pushbutton.	The	code	for	the	speed	control	portion	remains	similar	as	it	was	used	in	
the	previous	sketch	when	we	were	only	controlling	the	speed	of	the	motor.	Here	is	
the	complete	code.	

	

	
	
Some	new	variables	have	been	added	in	the	declarations	area	of	the	code	for	
assignment	as	needed	for	the	pushbutton	and	a	timer.	Also	one	line	of	code	was	
added	to	the	void	setup()	code	as	we	needed	to	the	set	the	function	on	the	digital	
I/O	pin	being	used	by	the	pushbutton.	
	
The	biggest	change	is	located	in	the	void	loop()	section	of	the	code.	Here	we	have	
added	a	block	of	code	from	lines	36	to	53	and	line	65	that	is	used	to	read	the	state	of	
the	pushbutton,	set	a	delay	timer	so	that	we	only	see	the	pushbutton	once	per	
activation	and	finally	set	the	motorRunState	to	true	(1)	or	false	(0).	The	code	on	line	
63	is	used	to	only	allow	the	previous	code	in	the	loop	to	function	once	until	the	
pushbutton	either	released	or	pressed	again.	
	
In	rungs	55	to	61	we	check	to	see	if	the	motorRunState	is	true	or	false.	If	the	state	is	
true	we	turn	on	the	motor	by	setting	the	output	pin	to	a	value	based	on	the	position	
of	the	potentiometer	which	will	power	up	the	motor.	If	the	state	is	false	we	set	the	
output	pin	to	a	value	of	zero	that	will	stop	the	motor.	
	
If	you	have	followed	the	wiring	shown	in	the	Fritzing	diagram	and	created	your	
sketch	using	similar	code	to	what	I	have	shown	above	you	should	now	be	able	to	
control	the	operation	of	your	motor	by	starting	and	stopping	it	when	you	want	and	
also	be	able	to	control	the	speed	of	the	motor.	
	

Adding	Direction	Control	
	
The	next	logical	step	in	motor	control	would	be	to	add	some	sort	of	directional	
control	to	your	existing	sketch.	This	sounds	easy	and	it	really	isn’t	that	hard	but	it	
will	require	some	understanding	of	how	we	reverse	the	direction	of	a	small	DC	
motor	and	the	transistor	or	Mosfet	driving	the	motor	will	need	to	be	changed	to	
something	a	little	more	elaborate.	
	
Let	us	first	look	at	how	the	motor	can	have	its	direction	reversed.		
	
Changing	the	direction	of	rotation	is	a	simple	operation	as	all	that	is	needed	is	to	
reverse	the	2	leads	of	the	motor.	If	you	have	been	following	the	wiring	directions	
that	you	have	been	shown	so	far	the	motor	is	either	turning	clockwise	or	counter-
clockwise	when	viewing	the	shaft	end	of	the	motor.	Each	time	you	start	the	motor	it	
rotates	in	the	same	direction	each	time.	To	reverse	the	motor	simply	swap	the	
position	of	the	2	wires	from	the	motor.	Now	when	you	start	the	motor	its	direction	
of	rotation	will	be	reversed.	That’s	really	how	simple	it	is	to	reverse	the	direction	of	
rotation	on	these	small	motors.	Although	this	works	well	it	is	not	practical	to	swap	
the	motor	connections	every	time	you	want	to	reverse	the	direction	of	rotation	for	
your	motor.	We	need	a	better	solution	and	this	can	be	done	by	changing	the	
electronic	components	that	we	are	using	to	drive	the	motor.	
	
H-Bridge	
	

	 	 	
	
These	2	images	from	Wikipedia	show	the	basic	operation	of	a	H-Bridge	circuit.	The	
left	image	shows	us	a	motor	that	has	been	connected	to	4	switches	and	a	DC	voltage	
supply	which	could	be	our	9-volt	battery.	The	switches	(S1,	S2,	S3	and	S4)	could	all	
be	transistors	or	Mosfets.	The	right	image	shows	that	if	you	close	switches	S1	and	S4	
we	see	that	the	left	side	of	the	motor	is	connected	to	the	top	of	Vin	and	the	right	side	
of	the	motor	is	connected	to	the	bottom	of	Vin.	Now	if	we	only	close	switches	S2	and	
S3	we	see	that	the	left	side	of	the	motor	is	connected	to	the	bottom	of	Vin	and	the	
right	side	of	the	motor	is	connected	to	the	top	of	Vin.	By	operating	the	switches	in	
this	fashion	we	can	now	control	which	side	of	motor	is	connected	to	the	positive	or	
negative	lead	of	the	battery.	By	doing	this	we	can	now	control	the	direction	of	
rotation	for	our	motor.	
	

An	easier	method	of	wiring	is	to	use	an	IC	(integrated	chip)	that	contains	all	of	the	
transistors	and	other	components	needed	to	create	the	H-
Bridge.	The	IC	we	will	use	is	a	L293D.	If	you	have	the	
Arduino	kit	the	IC	has	been	included.	If	you	have	the	
Adafruit	or	SparkFun	kit	this	IC	is	not	included	but	it	can	
be	obtained	from	most	electronic	supply	shops	that	maybe	
located	locally	to	you	or	from	other	on-line	suppliers.	
Doing	a	quick	search	of	the	on-line	suppliers	I	found	the	IC	for	about	$5	Canadian	for	
the	DIP-16	type	of	L293D	IC.	
	
	
	This	IC	has	the	ability	to	drive	2	
motors,	but	we	will	only	drive	1	motor	
for	now.	As	a	result	we	will	be	
connecting	9	wires	to	the	IC.		Pins	1	to	8	
and	pin	16	will	be	used.	This	image	
shows	the	pinout	connections	on	this	IC	
and	the	image	below	shows	the	Fritzing	
diagram	for	you	to	follow	using	your	kit	
components.	
	
	
	
	

	
	
This	may	look	complicated	but	just	take	your	time	making	the	connections	and	
everything	should	be	fine.	

If	you	are	looking	for	a	pre-built	solution	for	driving	a	DC	motor	or	more	than	one	
you	can	purchase	boards	that	are	pre-built	and	ready	for	you	to	connect	to	your	Uno	
microcontroller	board.	These	pre-built	units	come	in	2	main	types,	one	that	you	run	
wires	from	your	microcontroller	to	the	board	while	the	second	is	a	pre-built	“shield”	
that	connects	directly	on	top	of,	stacks,	on	your	Uno.	Either	of	these	boards	could	
cost	you	as	much	as	$30	Canadian	locally	but	if	you	are	willing	to	wait	a	few	weeks	
you	can	order	them	over	eBay	or	similar	service	and	have	them	shipped	from	China	
for	as	low	as	$2.50	Canadian.	The	images	below	both	types,	with	the	board	on	the	
left	and	the	shield	on	the	right.	
	

	 	
	
The	New	and	Complete	Code	
	
Based	on	the	hard-wired	sample	in	the	Fritzing	diagram	I’m	going	to	show	you	the	
code	that	I	used	in	my	sketch	for	the	completed	Start/Stop,	Direction	and	Speed	
Control.	I	have	broken	down	the	code	into	4	images	to	separate	the	major	sections	
from	each	other.	The	first	section	of	code,	lines	1	to	32,	includes	all	of	the	header	
comments	and	all	of	the	variable	declarations.		
	
	

	

	
	
The	second	block	of	code	is	the	void	setup()	section	where	the	pins	are	set	and	any	
initial	values	such	as	setting	the	speed	of	the	motor	to	0	just	in	case	it	wants	to	start	
moving.		
	

	
	
Next	we	continue	in	the	void	loop()	section	and	add	all	of	the	coding	needed	to	set	
the	direction	of	the	motor.	A	single	pushbutton	is	used	to	toggle	between	forward	
and	reverse.	
	

	

	
	
Finally,	the	final	portion	of	code	to	the	Start/Stop	control.	This	control	also	uses	a	
single	pushbutton	to	toggle	the	motor	on	and	off.	
	

	
	
Well	that’s	it,	all	111	lines	of	code.	This	may	look	a	little	daunting	but	just	take	your	
time	and	it	should	all	work	out	well.	
	
Conclusion	
	
I	hope	that	you	have	been	enjoying	these	series	of	articles	on	using	a	
microcontroller	to	add	animation	and	possibly	some	automation	to	your	model	train	
layout.	This	time	we	looked	at	motion	by	using	both	servos	and	small	DC	motors.	If	

you	combine	what	you	have	learnt	here	along	with	the	previous	articles	and	a	little	
imagination	you	may	find	yourself	extremely	pleased	on	what	you	can	accomplish.	
For	those	of	you	that	know	me	you	already	know	that	I	work	with	electronics	and	
computers	so	combining	these	interests	with	my	model	railroading	is	just	a	logical	
step	forward.	You	too	can	take	this	step,	I’m	sure	of	it.	
	
Join	me	in	the	next	article,	Part	4,	in	this	series	as	I	take	a	look	at	using	a	LCD	display	
that	you	can	use	to	display	information	on	your	layout	for	your	operators.	This	
information	could	include	information	if	a	staging	track	is	empty,	how	fast	you	are	
travelling	along	the	mainline	or	any	other	information.	The	information	can	be	
complex	or	simple	depending	on	how	far	you	want	to	go.	
	
Until	next	time	keep	playing	with	all	of	your	new	knowledge	to	create	and	you	will	
be	amazed	at	how	much	you	improve	your	skills	along	the	way.	
	
This	is	a	project	that	you	can	start	at	any	time	even	if	you	have	not	viewed	the	
previous	article	from	this	series.	The	previous	articles	are	available	in	the	preceding	
issues	of	The	Canadian,	so	enjoy!		
	
Issue	#59,	Introduction	
Issue	#60,	Part	1:	LED’s	
Issue	#61,	Part	2:	Input	Controls	

